
A RUDIMENTARY UNICODE
ABSTRACTION

Attempting to wrangle encoding and more

ThePhD – March 3rd, 2018

@thephantomderp

C++ Text Working Group, #std-text-wg for Cpplang Slack

WHY?

• std::wstring_convert is sort of terrible

• thankfully has been deprecated

• Needed to not sprinkle to_utfX or to_string<utfX> all over API boundaries

• leaves internal format a mystery until you look at boundary code / docs

• std::string / std::wstring poor descriptors

• std::u16string is a name, but it enforces and helps with nothing

SO ANOTHER STRING CLASS?

Two of them, actually•

text_view• -> basic_text_view<Char, Encoding, ErrorPolicy>

text • -> basic_text<Storage, Encoding, ErrorPolicy>

THE TIMES

• Clang (3.3/3.4) and GCC (4.9, 5.x)

• the cool toys I used to do things and then prepared for Stage II: Reality

• Sanity’s Eclipse, 2013

• Also known as Visual Studio

• November CTP, ICEs on the daily “Hey this compiles in GCC surely it- oh…”

• C++11, barely scratching 14

• “C++07”, with VC++

BASIC_TEXT_VIEW, VERSION I

• Codepoint abstraction, using template parameters:

• Char (= char) – pick code unit denomination

• Encoding (= default_encoding_t<Char>) – controlled what underlying contiguous

sequence would be treated as

• Encoding.decode(Iter, Iter), Encoding.encode(Iter, Iter) [+ reverse]

• ErrorPolicy (= detail::default_error_policy) – controlled how encoding errors would

be handled

• Policy(Encoding&, encoded/decoded_result, Iter, Iter) – do whatever

NOT… QUITE!

• Since we pass Char template, assumes unit of storage is const char*

• Contiguous storage got us 90% of the way there, though

• Honestly good enough™

• Nevertheless, modify interface anyways for completeness’s sake

• basic_string_view<Char> handled viewing a basic string

• Side note: handled mutability / immutability for us, but std:: is different

• const Char = immutable | Char = mutable

BASIC_TEXT_VIEW, VERSION 2

basic_text_view• <Rangeable, Encoding, ErrorPolicy>

• “look at us we’re cool with ranges!”

boiled down to • “listen just get the begin/end and shovel it through algos”

could never touch range• -v3 with 10 ft. pole on Visual Studio

Wrote • encoding_/decoding_iterator<BaseIt, Encoding, ErrorPolicy>

Handled all immutable algorithms, offered codepoint interface•

find/• rfind, starts_with, ends_with, search, compare, etc…

BASIC_TEXT

• basic_text<Storage, Encoding, ErrorPolicy>

• Similar to last, except template parameter Storage – just what we are storing

• struct basic_text : basic_text_view<Storage, Encoding, ErrorPolicy>

• No duplication, all member functions get carted over, it’s all so nice

• basic_text_view handles the storage for free

• insert, erase, append, prepend, replace, to_upper/lower/title

CONVERTING CONSTRUCTORS I

using • text = basic_text<std::string>; // std::string is assumed to be utf8

text• bark(u“🐶”); // assumes utf16, default_policy

text• wine(U“🍷”); // assumes utf32, default_policy

text• wine2(u8“🍷”); // assumes utf8, default_policy

text• for_char_literals(“abcd”); // assumes utf8, default_policy

text• my_text(U“🍷”); // assumes utf32, default_policy

basic_text• <std::string, ascii> ascii_text(u“🔥”); // static_assert triggers

basic_text• <std::string, ascii> ascii_text(u“☢️”, utf16{}, my_policy{}); // ok…

CONVERTING CONSTRUCTORS II

• Not sure if best implementation, truly

• converting constructors can be expensive, not sure I’d want to standardize

• or if I’d want to do it again, really

• But catching the errors with static_asserts and similar was nice!

• Having constructors similar to std::string was useful for codebase integration

• Most understood converting constructors cost, easily used string/text_view when

performance mattered

IMPLEMENTATION DETAILS

Also had • “allowed upgrades”

e.g. example ascii • -> utf8 did not trigger a static assert

☢️• BAD: also was optimized to just memcpy bits! ☢️

☢️• Did not require a policy that allowed for such: could be invalid ASCII ☢️

comparisons used codepoints, optimizations • ✔️ encoding/storage equivalent

applied this internally to everything, since replace/append/prepend could take •

arbitrary ranges with optional policy/char-range

⚠️ PROBLEMATIC ⚠️

• “Ў” != “Ў”

• ??? What?

• Welcome to the Combining Codepoint Fair!

• Cyrillic у combined with breve (˘): Ў = 2 codepoints

• Visually identical and canonically equivalent, but Short U (Cryllic): Ў = 1 codepoint

• Reversing a string does not split up code units, but combined codepoints split

PREPARE FOR FUTURE

Time to look into Normalization and Segmentation• …

Normalization and Segmentation can be done as iterators alone?•

Locales needed for graphemes / extended grapheme clusters, not normalization•

Prepared UCD (• Homerolled)

Release• -mode 8.5~8.8 megabytes, definitely not best compression

after beating it up to get around string limits / • initializer_list limits in Visual Studio

Included most everything, even Han data•

TIME FOR NORMALIZA-

• And then life happened.

• Was going to pick Normalization Form Compatibility Decomposition + Canonical

Composition, NFKC

• Stable Code Points property mentioned in UAX #15 §9

• Best for comparing with the outside world, not the best for internal processing?

• 3 or so years later, I enter a Slack Workspace, and there’s this channel

named…

WHAT TO DO: A CONVERSATION

ThePhD: So tzlaine/text it’s like Tom’s text_view, but stapled to utf8?

tzlaine: Yes. With quite a few staples.

https://github.com/tzlaine/text

WHAT TO DO

• De-couple the text class (and the rope class, too!) from its utf8 storage

mechanism

• Split asunder:

• into a text_view alike class similar to what Tom Honermann’s is

• into text class alike to what I used to have (except way better)

• hammer out free functions and their interfaces (transcoding, etc.)

• Enjoy the beautiful new C++17/20 in Visual Studio save ICE for hot days 😎

TIME SPLIT

• 1st Priority: figure out how to interact with the committee

Do this with less• -important std::embed(…) proposal (unrelated)

Work on de• -stapling tzlaine/text from its utf8 representation

Look at piling more UCD data into a complete database for C++ consumption•

Perhaps standardized way to query such data? (Maybe as an extension?)•

