A RUDIMENTARY UNICODE

ABSTRACTION

Attempting to wrangle encoding and more

ThePhD — March 39,2018
@thephantomderp
C++ Text Working Group, #std-text-wg for Cpplang Slack

WHY?

std::wstring_convert is sort of terrible

thankfully has been deprecated

Needed to not sprinkle to utfX or to_string<utfX> all over APl boundaries
leaves internal format a mystery until you look at boundary code / docs
std::string / std:wstring poor descriptors

std::ul 6string is a name, but it enforces and helps with nothing

SO ANOTHER STRING CLASS?

Two of them, actually
text_view -> basic_text_view<Char, Encoding, ErrorPolicy>

text -> basic_text<Storage, Encoding, ErrorPolicy>

THE TIMES

Clang (3.3/3.4) and GCC (4.9, 5.x)

the cool toys | used to do things and then prepared for Stage Il: Reality

Sanity’s Eclipse, 2013
Also known as Visual Studio

November CTP ICEs on the daily “Hey this compiles in GCC surely it- oh...”

C++11, barely scratching 14
“C++07”, withVC++

BASIC_TEXT_VIEW, VERSION |

Codepoint abstraction, using template parameters:
Char (= char) — pick code unit denomination

Encoding (= default_encoding t<Char>) — controlled what underlying contiguous
sequence would be treated as

Encoding.decode(Iter, Iter), Encoding.encode(Iter, Iter) [+ reverse]

ErrorPolicy (= detail::default_error policy) — controlled how encoding errors would
be handled

Policy(Encoding&, encoded/decoded_result, Iter, Iter) — do whatever

NOT... QUITE!

Since we pass Char template, assumes unit of storage is const char*
Contiguous storage got us 90% of the way there, though

Honestly good enough™

Nevertheless, modify interface anyways for completeness’s sake
basic_string view<Char> handled viewing a basic string
Side note: handled mutability / immutability for us, but std:: is different

const Char = immutable | Char = mutable

BASIC_TEXT_VIEW, VERSION 2

basic_text_view<Rangeable, Encoding, ErrorPolicy>
“look at us we’re cool with ranges!”
boiled down to “listen just get the begin/end and shovel it through algos”
could never touch range-v3 with 10 ft. pole on Visual Studio

Wrote encoding /decoding_iterator<Baselt, Encoding, ErrorPolicy>

Handled all immutable algorithms, offered codepoint interface

find/rfind, starts_with, ends_with, search, compare, etc...

BASIC_TEXT

basic_text<Storage, Encoding, ErrorPolicy>

Similar to last, except template parameter Storage — just what we are storing

struct basic_text : basic_text view<Storage, Encoding, ErrorPolicy>
No duplication, all member functions get carted over, it’s all so nice
basic_text view handles the storage for free

insert, erase, append, prepend, replace, to_upper/lower/title

CONVERTING CONSTRUCTORS |

using text = basic_text<std:string>; // std::string is assumed to be utf8
text bark(u“ §)”); // assumes utfl6, default_policy
text wine(U“§”); // assumes utf32, default_policy
text wine2(u8“8”); // assumes utf8, default_policy
text for_char_literals(“abcd”); // assumes utf8, default_policy

text my_text(U“8"); // assumes utf32, default_policy

basic_text<std::string, ascii> ascii_text(u“({y”); // static_assert triggers

"

basic_text<std:string, ascii> ascii_text(u“@)”, utfl6{}, my_policy{}); // ok...

CONVERTING CONSTRUCTORS Il

Not sure if best implementation, truly
converting constructors can be expensive, not sure I'd want to standardize

or if I'd want to do it again, really

But catching the errors with static_asserts and similar was nice!
Having constructors similar to std::string was useful for codebase integration

Most understood converting constructors cost, easily used string/text_view when
performance mattered

IMPLEMENTATION DETAILS

Also had “allowed upgrades”
e.g. example ascii -> utf8 did not trigger a static assert
(45 BAD: also was optimized to just memcpy bits! (&)
(@ Did not require a policy that allowed for such: could be invalid ASCIl ()

comparisons used codepoints, optimizations & encoding/storage equivalent

applied this internally to everything, since replace/append/prepend could take
arbitrary ranges with optional policy/char-range

/N PROBLEMATIC A\

J J

uyn | = uyn
22? What!?

Welcome to the Combining Codepoint Fair!
Cyrillic y combined with breve (7): Y = 2 codepoints

Visually identical and canonically equivalent, but Short U (Cryllic): Y = | codepoint

Reversing a string does not split up code units, but combined codepoints split

PREPARE FOR FUTURE

Time to look into Normalization and Segmentation...
Normalization and Segmentation can be done as iterators alone?

Locales needed for graphemes / extended grapheme clusters, not normalization

Prepared UCD (Homerolled)
Release-mode 8.5~8.8 megabytes, definitely not best compression
after beating it up to get around string limits / initializer_list limits in Visual Studio

Included most everything, even Han data

TIME FOR NORMALIZA-

And then life happened.

Was going to pick Normalization Form Compatibility Decomposition + Canonical
Composition, NFKC

Stable Code Points property mentioned in UAX #15 §9

Best for comparing with the outside world, not the best for internal processing?

3 or so years later, | enter a Slack Workspace, and there’s this channel
named...

std-text-wg £ 60
Informal discussions on improving C++ standards support for Unicode and text
processing in general. See also https:/github.com/tahonermann/std-text-wg

WHAT TO DO: A CONVERSATION

ThePhD: So tzlaine/text it’s like Tom’s text_view, but stapled to utf8?

tzlaine: Yes. With quite a few staples.

https://github.com/tzlaine/text

WHAT TO DO

De-couple the text class (and the rope class, too!) from its utf8 storage
mechanism

Split asunder:
into a text view alike class similar to what Tom Honermann’s is

into text class alike to what | used to have (except way better)

hammer out free functions and their interfaces (transcoding, etc.) /7

——

Enjoy the beautiful new C++17/20 in Visual Studio save ICE for hot days &)

TIME SPLIT

|t Priority: figure out how to interact with the committee

Do this with less-important std::embed(...) proposal (unrelated)

Work on de-stapling tzlaine/text from its utf8 representation

Look at piling more UCD data into a complete database for C++ consumption

Perhaps standardized way to query such data? (Maybe as an extension?)

